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Abstract 

 

In many real world manufacturing environments the work balance problem needs to be solved in order 

to obtain an optimal solution for resource allocation. The main objective to be accomplished consists 

on the adequate distribution of every incoming order to every machine with processing capability. Once 

an efficient task distribution process is achieved, the entire plant workload can be incremented. This 

paper focuses on presenting an approach of a multi-agent system (MAS) based algorithm for 

automatically processing task allocation, particularly in manufacturing applications. The developed 

simulation environment integrates many of the key critical working conditions of a classical job-shop 

scheduling problem, such as: dynamic environment, order rescheduling, and priority change. The 

results section presents the performance analysis for the algorithm, showing that the proposed specific 

developed MAS environment approach is a viable solution for properly manage many real 

manufacturing working instances with good quality. 
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1. Introduction  

 

The manufacturer's success is no more measured by their ability to cost-effectively produce a single 

product; success now seems to be measured in terms of flexibility, agility and versatility [1]. In order to 

survive, manufacturing systems need to adapt themselves at an ever-increasing pace to incorporate new 

technology, new products, new organizational structures, etc. The above trends have motivated 

researchers in academia and industry to create and exploit new production paradigms on the basis of 

autonomy and cooperation because both concepts are necessary to create flexible behavior and thus to 

adapt to the changing production conditions. Such technologies provide a natural way to overcome 

such problems, and to design and implement distributed intelligent manufacturing environments [1]. 

One of the more complex problems in manufacturing systems is scheduling, an essential activity 

focused on distribute orders to machines ensuring an efficient production scheme. Many efforts have 

been developed aiming to address the tasks orders distribution: event though it cannot deal with all the 

real world problems,  the Resource Constrained Project Scheduling Problem (RCPSP) is a standard 

model for NP-hard problems belonging to project scheduling [2], this same model have been extended 

using multi-agent systems (MAS) [3] 

 

Koestler [4] set the basic concepts to establish a holonic organization model to be applied particulary in 

manufacturing. This kind of system is basically cooperative and distributed. In fact, a holonic 

organization is aimed to feature the robustness of descentralized organizations, and the efficiency of 

hierarchical control architecures [5]. From the manufacturing control viewpoint, an holonic system is 

focused mainly on scheduling, shop floor control, reactive scheduling and multi-agent negotiation. The 
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objective of this organizational framework is to assign tasks to the resources for optimizing certain 

performance criteria like lead time, or tardiness. For example, from a feature based milling process [5] 

perspective, the product holon specifies the feature to be processed: pocket shape, size and tolerances. 

The resource holon executes this task by selecting appropriate tools. The resource holon carries out a 

tool length measurement.  From the manufacturing viewpoint, several order holons are launching tasks 

on resources. Holonic manufacturing systems are tightly related to the domain of multi-agent systems 

and, more precisely, of autonomous cooperative agents for distributed manufacturing. Modern 

manufacturing systems have to deal with dynamic situations such as machine break-down, emergency 

orders, priority changes and other kinds of disturbances. The holonic concept has been proposed as an 

efficient paradigm for developing such an adaptive manufacturing system.  

 

Nevertheless, despite the large list of works reported in this field there is almost no resource or 

scientific study on the performance measure of this type of approaches under very common and critical 

execution situations. Even so, Bench4Start (http://www.univ-valenciennes.fr/bench4star/) must be 

pointed out as an interesting approach for defining benchmarking solutions for manufacturing systems. 

Nevertheless, Bench4Start does not take into account multi-agent based approaches for manufacturing 

scheduling.Our goal is to simulate a real manufacturing system and design and analyze the 

performance of an agent based system under key critical situations such as:  dynamic environment, 

tasks rescheduling, and priority change.  

 

1.1 Task allocation in intelligent manufacturing systems: state of the art 

 

Scheduling is one of the most important fields for manufacturing optimization: involves determining 

the allocation of plant resources. Tasks must be assigned to the process units, and the duration and 

amount of processed material related to those assigned tasks must be determined [6].  

 

A well-known manufacturing-scheduling problem arising in this area is the job shop scheduling 

problem with n jobs, each one consisting of m operations. Here, we have a certain number of machines 

(m) which can be equipped with different tools each of which can handle exactly one of the operations 

of each job. Each operation needs a certain amount of processing time, the aim is to find an order x of 

the operations on each machine such that the finishing time c(x) of the last job (the overall processing 

time for all jobs) is minimized. This is also known to be a very difficult problem such that some test 

problems of moderate size are still unsolved. 

 

Many important practical problems require efficient allocation of resources in order to complete goal 

activities over time in presence of complex state-dependent constraints. For example, consider the 

problem of managing the supply chain of a manufacturing enterprise, involving a large and dynamic 

amount of job allocation tasks in the assembly lines. For the enterprise to operate efficiently, supply 

chain functions must be executed in a coordinated manner. On this scenario, the coordination problems 

can be addressed using a network of cooperating intelligent agents [7,8], each of them performing one 

or more supply chain functions, and coordinating their actions with other agents. This kind of network 

is capable of, among other functions: (a) develop efficient communication and coordination scenarios 

to properly manage change and solve problems (b) create intelligent information infrastructures that 

keep agents permanently aware of relevant information and (c) develop a set of decision structures in 

order to properly distribute the incoming job tasks. 

 

By definition, rescheduling is the process of updating an existing production schedule in response to 

unconsidered disturbances. In dynamic manufacturing environments, the schedules must not only be 

generated with enough quality, they also have to allow a quick reaction to unexpected events during the 

process in a resource-effective manner. For these disturbances, rescheduling has to be considered as a 

practically mandatory design factor. There are many types of these kind of events that can alter all the 

planned scheduling process, including rush orders, machine failures and time delays, among others. 

 

1.2 Agent technology 

 

With the possibility of creating autonomous entities, capable of communicate their preferences and 

negotiate among them for achieving individual or system goals, [26]  the software agents represent a 

robust system able to dynamically react to unexpected events. They have been vastly and successfully 

applied into the manufacturing field [27] and recently, tested and fully operational in industrial 

environments [28]. 
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1.3 Temperature-equilibrium based mas approach for dynamic scheduling in manufacturing 

 

The proposed solution algorithm, dubbed Temperature Equilibrium Algorithm, is implemented 

designing a Multi-Agent System (MAS) under the JADE platform, and applies some of the intrinsic 

capabilities of the software agents, such as cooperation and communication. The simulation with agent-

based systems integrated to complex systems has already been verified [9,10], as well as their 

applicability on manufacturing [11].  In short, the general characteristics that integrate the simulator are: 

 

The job orders amount and their corresponding reference values are generated randomly. Being the 

latter the priority level associated with every task. Each temperature value, representing the workload 

associated to every agent in the system is generated randomly.  A high value represents a very active 

(―hot‖) agent. In addition, a low temperature value indicates a ―cold‖ agent, i.e., an agent with less 

workload level, and under such conditions , more capable for receiving incoming jobs.    

 

Once generated and assigned the values described above, the internal procedure inside the system for 

reaching general equilibrium is as follows: the ―hottest‖ agent shares a certain volume of its workload 

with a ―colder‖ agent, which helps towards a better workload distribution inside the overall system. 

The values generated previously to the distribution process and the subsequent temperature values, as 

well as the negotiation status are shown to all agents in order to properly visualize their internal state 

and to have the ability to interchange workloads whenever required. The next figure depicts this 

scenario. 

 

 
Fig. 1 MAS environment under Temperature Equilibrium 

 
2. Materials and methods 

 

The proposed multiagent architecture for scheduling requirements includes two levels. The first one is 

formed by those entities related to the real environment yet to be simulated. The second comprehends 

the responsible agents designed for controlling and handling the aforementioned entities. Furthermore, 

the multiagent architecture requires more elements, such as information and communication 

management for each agent, as well as coordination and execution control for the assigned jobs. 

 

Similarly, in the development of the simulation environment, necessary assumptions were taken into 

account, in order to comply with a proper Computer Integrated Manufacturing System [11]: 

 The system can collect and process the necessary information to make decisions at 

production time. 

 The possibility of detecting and reacting to critical situations and react to them is intrinsic to 

the simulator. 

 The real working environment consists in an assembly line system, with three job stations 

receiving constant manufacturing assignments from different categories. The integrated 

agents are autonomous, each one representing a physical entity into the system. 

 

2.1 Jade platform 

 

The software framework on which the simulated environment is depending on is JADE (Java Agent 
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Development Framework). In the sector of software programming science, this platform is the most 

popular. It has been used in many application domains such as supply chain management, auctions, etc. 

[18-20] This platform facilitates the development of intelligent agent systems and simplifies the 

development process under a standard compliance comprising a set of services and autonomous agents. 

[12], incorporating, as well, the main features of agency: (a) autonomy, (b) social ability (c) 

reactiveness and (d) pro-activeness [13]. Also, JADE integrates a huge amount of ready-to-use 

infrastructure components, providing a reliable mechanism for creating customized interaction 

protocols and ontologies. From a software engineering perspective, JADE incorporates some 

valuable features [21], such as: a) Interoperability: JADE agents can interoperate with other 

agents, given that all of them comply with the FIPA standard [22].  b) Uniformity: JADE provides 

a homogeneous set of APIs that are independent from the network and Java version c) Easy to use: 

consists on a simple and intuitive set of APIs. 
 

2.2 Dynamic environment 

 

Nowadays, it is impossible to manage and control the production levels without the incorporation of 

intelligent tools capable of decision making at each stage of the process. One of the basic properties 

characterizing a modern manufacturing system is dynamism, defined as the set of changes in the 

structure and behavior during operation. This concept expresses different competencies, responsibilities 

and relationships between entities [14]. The first scheduling requirement in the manufacturing area is 

for it to be dynamic [15]; in it, the job orders arrive to the assembly line with diverse characteristics 

like different priorities, manufacturing intervals, etc. The system must be able of collecting and 

processing information from different sources in order to properly make decisions at all stages during 

the process. In this kind of environment, the work doesn´t stop, it is only prioritized in different forms. 

Applying a proper algorithm for distributed control, the individual agents can make their own decisions 

over manufacturing control relating to resource allocation, prioritization,etc. The main benefit of this 

approach is that it improves the robustness to change inside the system, managing the sudden 

disruptions or reorganizations in a better way [23].  In order to recreate a simulation environment for 

this specific requirement, the software elements depicted on Figure 2 were included. 
 

 
Fig. 2 Dynamic Environment Classes using Temperature Equilibrium Algorithm 

 
The next requirements were considered for the integration of the simulated Dynamic working 

environment: 

 Every agent can process only one job at a time. 

 The individual priority and temperature values corresponding to the set of incoming tasks are 

generated randomly, in the form of double precision numbers rounded up to one decimal 

place. This consideration, as detailed later, contributes to a more uniform application of the 

protocol equilibrium into the agents integrating the MAS. 

 Once initiated the equilibrium protocol into the system, the task order is allocated to the most 

capable agent. 

 

The Table 1 describes the operational flow into the MAS environment set for this test. 

 

Table 1 Temperature Equilibrium Algorithm for task allocation in a Dynamic Environment 

(1) Agent Ti sets the priority value Vi for the corresponding resource to every generated job assignment. 

Vi is a numeric floating point value rounded up to one decimal place, considering 0.0≤ Vi ≤ 9.9. 

(2) The coordinator agent Aj, gathers the temperature values tj, specific to every agent, constituting a set 

defined by:  Tj = {tj , t j+1,.. t j+n} for assigning each job order. Every Tj value is a double precision 

random numeric value rounded up one decimal place, such that 0.0≤tj ≤9.9 for all the elements in the 
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set. 

(3) Ai verifies every temperature value in order to obtain the highest element, defined by: M=max (Ti)).  

(4) Once the highest value is obtained, M≥8 is evaluated. When valid, the agent is considered “hot in first 

degree”. 8 tenths are substracted from its original value and distributed equally to the other agents for 
searching a more equilibrated heat distribution into the MAS. 

(5) 6≤ M <8 is evaluated; when valid, the M agent is considered “hot in second degree”. 6 tenths are 

substracted from its original value and distributed equally among the other agents for searching a more 
equilibrated heat distribution into the MAS. 

(6) Whenever M <6 is valid, the corresponding agent is considered “cold”. No temperature equilibrium 

protocol is activated. 

(7) When M >= Vi is valid, the active task is allocated to the corresponding tj agent. M-1 is applied, 

representing the workload increment in that agent. 

(8) On the other side, when M < Vi is valid, the allocation process is considered null. The simulator is 

restarted to generate a new set of agents. 

 
For this case, three jobs are generated using the numeric format specified on Table 1. In this case, the 

values are 1.4,0.8 y 8.3 corresponding to the 1st, 2nd and 3rd job tasks. In the same manner, the heat 

values for the agents are generated, obtaining 7.5 as the highest value, which leads us to consider the 

agent as ―hot in second degree‖. For this reason, 8 tenths of its value are substracted, distributed 

uniformly among the rest of the agents. Each job value is compared against the most capable agent. In 

the example shown in the figure, 2 tasks are successfully allocated and 1 remains unassigned. 

3. Rescheduling 

 

The Rescheduling process can be defined in general terms as a dynamic adjustment that updates the 

production scheme in response to sudden interruptions susceptible of occurrence in the manufacturing 

shop floor. There are diverse strategies that specify how and when to apply rescheduling to properly 

confront those occurrences. The integration of multi-agents in different aspects of manufacturing has 

increased in the recent years. Kornienko et al [24] have studied flexible manufacturing, on which 

rescheduling is a core concept applying multi-agents, even proposing a MAS repairer of damaged plans 

in a manufacturing environment [25]. Within the scope of this work, the next rescheduling strategies 

will be considered: High Priority and High Utilization [16]. For the proper application of this test, the 

software components developed are shown in Figure 3. In the above figure, it can be noted that the 

WinTempAg class defines the equilibrium protocol into the system, which applies the principles of the 

temperature model [17], described briefly on the following section. 

 
3.1 Temperature model 

 
This model allows determining the amount of workload (―heat‖) inherent for each agent into the MAS 

and, in consequence, it´s useful for achieving a better distribution of the generated tasks based on three 

main concepts:  

 

Relative heat, temperature and latent heat. Relative heat Ht (Aij) measured during a t time lapse 

represents the active workload corresponding to agent Aij. This concept is defined as follows: 

Ht (Ai
j
)=Db+De-Dp 

Where: 

Db=∑ m(𝑇𝑥)/q𝑇𝑥
𝑏
𝑇𝑥=0
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Fig. 3 Software classes for Rescheduling tests 

 

 
The b sub index represents the entire set of waiting activities. Tx=0 is the reference for the task under 

execution. Every job is associated to a quality service attribute qTx with a value range from 0 to 1. On 

the other side,  De represents the total duration of the new job orders during the t  lapse. It is assumed 

that the activity generation follows a Poisson distribution with an arrival rate represented by λ and an 

average defined by μ.  From here: 

De=∑ m(𝑇𝑥)/q𝑇𝑥
λt
𝑇𝑥=1

 

Where Dp represents the total duration of the processed activities on time t: 

Dp=t / μ 

From here, the temperature for an agent on a t interval is defined as follows: 

Tt (Ai
j
)= Ht (Ai

j
)/t 

The concept of latent heat is related to the price involved into the activity transference between two 

agents with no incidence on the temperature increasing. For that reason, is not considered in the 

developed simulations of this study. 

 
3.2  Rescheduling strategies 

 

The first applied test to the MAS under rescheduling using the temperature equilibrium algorithm is the 

High Priority test. The change in job priority is considered one of the rescheduling factors [29] that can 

change the system status and affect performance. For practical purposes, a flexible manufacturing 

environment will be considered; on this, jobs continue to arrive over an infinite time horizon, 

conforming a dynamic rescheduling working strategy. Once the above defined concepts were 

considered, the application scheme for this test was developed, just as described in table 2. 

 

Table 2 High Priority  algorithm under Rescheduling conditions 

(1) Agent Ti  assigns the priority value  Vi from the corresponding resource to each generated job order. Vi 

is a numeric floating point value rounded up to one decimal place, into the 0.0≤ Vi ≤ 9.9 interval 

(2) The coordinator agent Aj, gathers the temperature values tj, specific to every agent, constituting a set 

defined by:  Tj = {tj , t j+1,.. t j+n} for assigning each job order. Every Tj value is a double precision 

random numeric value rounded up one decimal place, such that 0.0≤tj ≤9.9 for all the elements in the 
set. 

(3) Each tj, value represents the workload for every individual agent. For practical purposes   b= tj is 
considered. 

(4) λ is calculated as the probability that the randomly generated job orders value falls between the 5 to 7 
interval (high priority).  The obtained average is μ=5 from the dynamic allocation tests. 

(5) An average time value of t=10ms is considered from the previously performed dynamic allocation tests 

(6) Ht  is calculated using the previous data for every agent in the MAS 

(7) Once Ht,, is obtained, the equilibrium protocol is initiated, distributing  the “hot” agent workload to the 

“cold” agents proportionally to the temperature difference previously calculated. If this value is low, 
the general temperature of the system remains unaltered.. 

(8) Ai verifies each temperature value obtained from the previous stage and calculates the maximum from 

the generated set:  M=max (Ti  ).  
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(9) A failure condition is generated randomly in the agent with the best job acceptance conditions. The 
second best agent is then selected as replacement. Operation time increment due to this occurrence is 

defined by: t
i.

 = t
i.

+ ∆t
i.

 

(10) If, for each T
i j

 element tj = tj+1=… tj+n is true, tj  is then designated as the maximum value for resource 

allocation, whether a failure occurrence is present or not. 

(11) If M >= Vi, is true, the resource is then allocated to the corresponding tj agent. M -1 is then applied 

representing the workload increment in the agent. 

(12) On the other side, when M < Vi is valid, the allocation process is considered null. The simulator is 

restarted to generate a new set of agents. 

 
 

3.3 High utilization algorithm 

 

This algorithm is basically applied under the same working conditions considered for the High Priority 

algorithm. The main difference is that the latter, once activated the failure occurrence in the most 

capable agent, selects as an alternative the agent with the least allocation capacity from the MAS. The 

general assumptions for all the simulations are: (a) the job arrivals, processing and departures are 

deterministic, (b) the machine failures are generated randomly and (c) every machine can only process 

one job at a time. This algorithm is described in Table 3. 

 

Table 3 High Utilization Algorithm under Rescheduling 

(1) The agent Ti assigns the priority value  Vi for every resource corresponding to a generated job order. Vi 

is a numeric floating point value rounded up one decimal place, such that 0.0≤ Vi ≤ 9.9. 

(2) The coordinator agent Aj, reveals each tj temperature value, specific for every agent, conforming a set 

defined by: Tj = {tj , t j+1,.. t j+n} to allocate all the job orders. Every Tj value is a random double 

precision numeric value rounded up one decimal place, such that 0.0≤tj ≤9.9 is valid for every element 
included in the set. 

(3) Every  tj value represents the active workload in the individual agent. It is assumed that b= tj, 
(4) The value λ is calculated as the probability that the high priority job orders falls in the range between 5 

and 7. The average among them is  μ=5, obtained from the dynamic allocation tests.. 
(5) A mean time value of  t=10ms is considered, from the average measurements obtained from the 

dynamic allocation test. 

(6) Ht is calculated using the previusly measured data for every agent inside the MAS 

(7) Once obtained Ht,, sthe equilibrium protocol is initiated. The workload from the “hot” agent is 

proportionally distributed to the “cold” agents, considering the calculated temperature values. If the 
measured value doesn t́ imply a high value, the system remains unaltered.. 

(8) Ai  verifies every resultant temperature value and obtains the maximum from the generated set, 

defined by: M=max(Ti  ).  

(9) A failure condition is randomly generated in the most capable agent. The least apt agent (the one who 

accomplishes m= min(Ti )) is selected as the main element for job allocation. The operation time 

increases due to the failure in the form t
i.

 = t
i.

+ ∆t
i.

 

(10) If tj = tj+1=… tj+n is valid for every element in T
i j

 , then tj  is selected as the maximum value for resource 

allocation purposes with or without failure ocurrence. 

(11) If m >= Vi is true, the resource is allocated for the corresponding tj agent. m -1 is applied, 

representing the workload increasing for the agent. 

(12) Otherwise, if m <  V, is true, the allocation is considered deserted. The simulator is restarted in order 

to generate a new set of agents. 

 

 
3.4 Priority change algorithm 

 
For the proper application of this test, two priority levels (random values) are generated for the 

active job order. Once generated, both are compared against an agent subsystem integrated with the 

most and least capable agent in order to evaluate their behavior. The algorithm is described on Table 

4. 

 

Table 4  Priority Change Algorithm 

(1) The agent Ti  assigns the initial and final priority value sets V
i

  and  H
i 

 , respectively , corresponding to 
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every generated job order. H
i    

> V
i

 is valid for all cases. 

(2) The coordinator agent Aj presents the temperature values tj, specific for each agent, confirming a set 

defined by: Tj = {tj , t j+1,.. t j+n} to properly allocate every job order. All Tj are randomly generated, 

double precision numeric values, rounded up one decimal place, such that 0.0≤tj ≤9.9 is true for all the 
elements in the set. 

(3) Aj  verifies every resultant temperature value, obtaining the maximum and minimum values of the 

generated set. These are defined by: M=max (Ti  ) y m >= Vi, respectively. 

(4) K= M+ m,  is applied, defined as the total system capacity for processing the job order.. 

(5) If K <  V
i

, is true, the allocation process is considered deserted, and a new execution process is 

initiated. This is interpreted as system inability for properly processing orders due to saturation. 

(6) If K >= V
i

 is true, the system is evaluated before an aventual priority change for all probable increment 

scenarios. 
 

 
4. Results and Discussion 

 

4.1 Dynamic environment test 

 

 
Fig. 4 Job allocation for Dynamic environment test 

 
The dynamic environment test was simulated with 100 iterations for every 1 to 10 new job orders 

generated with random priorities. The priority range values were set as follows: 8-9 for high priority, 4-

7 for medium priority, and 0-3 for low priority. The results shown in Figure 4 reveal that the high 

priority job allocation average decreases when the number of generated jobs increases in the system. 

When one job order is generated, the average result for 100 iterations reaches 16%. On the other hand, 

the allocation average corresponding to medium priority jobs remains almost equal for 1 to 10 jobs 

generated. 

 

Similarly, it can be noted that a very high amount of allocated jobs correspond to the low priority level. 

Also, the unallocated jobs index with one job is very high (39%), while it remains almost stable (10,5% 

on average) when the number of jobs increases. 

 
4.2 High priority test 

 

 
Fig. 5 Job allocation for High Priority test 
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The above figure shows the distribution of completed job orders including the random failure 

generation (Breakdown) in the best agent of the system, and applying the temperature equilibrium 

protocol when required. The average distribution of completed orders is: 40%, 14% and 10% for Low, 

Medium and High priorities, respectively. 

 

In order to develop a more realistic simulation of the working environment while incorporating the 

intrinsic characterisitics of the proposed algorithm, some modifications were added to the software 

model; among them, the development of Java classes allowing both the random flow generation based 

on the Poisson distribution and the generation of a random set of  numerical values rounded up one 

digit for better precision. This model was tested and analyzed  including the necessary rescheduling 

conditions. 

 
4.3 High utilization test 

 

 
Fig. 6 Job allocation for High Utilization test 

 
For this test, the High Priority job tasks allocation performs well, reaching an average 25%, a better 

result than the obtained with the previous tests. On the other side, the unallocated job tasks index 

remains almost at the same level than before with an average of 30. In this specific environment, the 

simulator defines the least apt agent as an alternative once the failure (Breakdown) has occurred in the 

main agent. One of the main characteristics of software agents is autonomy. From the code perspective, 

three static functions were developed representing this ability to manage the required agent change 

decision properly. 

 

In general, under High Utilization conditions, the medium priority job orders allocation is the best 

obtained of the all the rescheduling simulations. 

 
4.4 Priority change 

 
The next figure shows the results of applying the Priority Change test in the temperature equilibrium 

environment. The average increment inside the system was evaluated when a random priority change in 

the job orders was applied. Similarly, the table indicates the generated values. 

 

 
Fig. 7 Average saturation level. Priority Change test results 
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Under the above conditions, the simulator generates randomly the priority values from 0 to 9. To 

determine the joint priority, since two job tasks of different value arrive simultaneously, the following 

conditions are considered: 

 Low: the sum is between the 0 to 6 range. 

 Medium: the sum is between the range of 7 to 12. 

 High: The sum is beween the range of 13 to 18. 

For practical purposes, if the system is capable of receiving the job order with an initial priority level 

but is not able to allocate it when the priority changes to a higher level, an oversaturation is declared 

inside the system. 
 

Table 5. Average saturation levels inside the system when allocating the job orders with 

random priority change. 

Experiments  Low to Medium 
priority 

Medium to High 
priority 

Low to High 
priority 

1-20 97% 79% 108% 
21-40 95% 81% 98% 
41-50 99% 85% 105% 

 
From the data in the above table and figure, the obtained average saturation level reaches 94% in the 

transition to a higher priority. Also, only for the Medium to High priority transition level an adequate 

performance is observed. 

 

5. General results and conclusions 

 

On first instance, and in order to obtain the final results for the dynamic test, a summatory for the 

completed job orders was conducted in the three priority levels. In the same way, a concentrated result 

corresponding to the unallocated orders was obtained. Once obtained these values, it can be noted that 

the system presents some problems for completing job tasks of both medium and high priority, 

obtaining just a 25%. In comparison, the percentage level obtained for low priority job tasks is 

relatively high, reaching 38%; however, the unallocated orders level is equiparable to the latter, with 

37% average, representing three times value corresponding to the high priority completed orders. 

 

The High Priority test results are very similar to the previously obtained for the Dynamic Allocation 

test: the total amount of unallocated orders is higher than the corresponding value obtained for the high 

and medium priority jobs; however, a significant increment in low priority jobs allocation is observed , 

representing almost 50% of the total  generated orders. 

 

For the High Utilization test, despite the failure occurrence in the agent with the best allocation 

capacity, the total amount of successfully completed job orders increments significantly in reference to 

the results previously obtained (figure 10). Furthermore, the final distribution results arranged by 

priority level, reveals an increased amount of high priority job orders succesfully completed, reaching 

more than 30% on average, and in consequence, the low priority level job orders successfully allocated 

diminishes for this test, representing a 17% on average. 

 

Given that the maximum saturation level must correspond to 100%, it can be concluded that the system 

is highly saturated under this working conditions. 

 

From all of the above, it can be concluded that the Temperature Equilibrium algorithm is a robust and 

feasible alternative for working conditions with high probability of failure occurrence and/or high 

saturation levels. The test with the highest rejection index – Priority Change – is relatively good, 

considering the low average saturation level observed in the transition from medium to high priorities. 

Under dynamic working conditions with minor failure occurrence probability, the results shown reveal 

a lesser performance, evidencing that the strength of this algorithm resides on collaborative and 

equillibrated work, and in the first tests applied, only the main agent is considered for allocation 

purposes. 
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